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NAS RK is pleased to announce that News of NAS RK. Series physico-mathematical journal 
has been accepted for indexing in the Emerging Sources Citation Index, a new edition of Web of 
Science. Content in this index is under consideration by Clarivate Analytics to be accepted in the 
Science Citation Index Expanded, the Social Sciences Citation Index, and the Arts & Humanities 
Citation  Index.  The  quality  and  depth  of  content  Web  of  Science  offers  to  researchers,  
authors, publishers, and institutions sets it apart from other research databases. The inclusion of 
News of NAS RK. Series of chemistry and technologies in the Emerging Sources Citation Index 
demonstrates our  dedication  to  providing  the  most  relevant  and  influential  content  of  chemical  
sciences  to  our community.

Қазақстан Республикасы Ұлттық ғылым академиясы «ҚР ҰҒА Хабарлары. Физика-
лық-математикалық  сериясы»  ғылыми  журналының  Web  of  Science-тің  жаңаланған  
нұсқасы Emerging   Sources   Citation   Index-me   индекстелуге   қабылданғанын   хабар-
лайды.   Бұл индекстелу барысында Clarivate Analytics компаниясы журналды одан әрі the 
Science Citation Index Expanded, the Social Sciences Citation Index және the Arts & Humanities 
Citation lndex-ке қабылдау  мәселесін  қарастыруда.  Webof  Science  зерттеушілер,  ав-
торлар,  баспашылар мен  мекемелерге  контент  тереңдігі  мен  сапасын  усынады.  ҚР  
ҰҒА  Хабарлары.  Химия және технология сериясы Emerging Sources Citation lndex-ке енуі 
біздің қоғамдастық үшін ең өзекті және беделді химиялық ғылымдар бойынша контентке 
адалдығымызды білдіреді.

HAH  PK  сообщает,  что  научный    журнал  «Известия    HAH  PK.  Серия  физико-ма-
тематическая»  был  принят  для  индексирования  в  Emerging  Sources  Citation  Index, 
обновленной  версии  Web  of  Science.  Содержание  в  этом  индексировании  находится  в 
стадии рассмотрения компанией Clarivate Analytics для дальнейшего принятия журнала в 
the Science Citation Index Expanded, the Social Sciences Citation Index и the Arts & Humanities 
Citation Index. Web of Science предлагает качество и глубину контента для исследова-
телей, авторов,  издателей  и  учреждений.  Включение  Известия  HAH  PK  в  Emerging  
Sources Citation   Index   демонстрирует   нашу   приверженность   к   наиболее   актуаль-
ному   и влиятельному контенту по химическим наукам для нашего сообщества.
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NAS RK is pleased to announce that News of NAS RK. Series of geology and technical sciences 
scientific journal has been accepted for indexing in the Emerging Sources Citation Index, a new 
edition of Web of Science. Content in this index is under consideration by Clarivate Analytics to be 
accepted in the Science Citation Index Expanded, the Social Sciences Citation Index, and the Arts 
& Humanities Citation Index. The quality and depth of content Web of Science offers to researchers, 
authors, publishers, and institutions sets it apart from other research databases. The inclusion of 
News of NAS RK. Series of geology and technical sciences in the Emerging Sources Citation 
Index demonstrates our dedication to providing the most relevant and influential content of geology 
and engineering sciences to our community.

Қазақстан Республикасы Ұлттық ғылым академиясы «ҚР ҰҒА Хабарлары. Геология және 
техникалық ғылымдар сериясы» ғылыми журналының Web of Science-тің жаңаланған 
нұсқасы Emerging Sources Citation Index-те индекстелуге қабылданғанын хабарлайды. Бұл 
индекстелу барысында Clarivate Analytics компаниясы журналды одан әрі the Science Citation 
Index Expanded, the Social Sciences Citation Index және the Arts & Humanities Citation Index-ке 
қабылдау мәселесін қарастыруда. Webof Science зерттеушілер, авторлар, баспашылар мен 
мекемелерге контент тереңдігі мен сапасын ұсынады. ҚР ҰҒА Хабарлары. Геология және 
техникалық ғылымдар сериясы Emerging Sources Citation Index-ке енуі біздің қоғамдастық 
үшін ең өзекті және беделді геология және техникалық ғылымдар бойынша контентке 
адалдығымызды білдіреді.

НАН РК сообщает, что научный журнал «Известия НАН РК. Серия геологии и технических 
наук» был принят для индексирования в Emerging Sources Citation Index, обновленной версии 
Web of Science. Содержание в этом индексировании находится в стадии рассмотрения 
компанией Clarivate Analytics для дальнейшего принятия журнала в the Science Citation Index 
Expanded, the Social Sciences Citation Index и the Arts & Humanities Citation Index. Web of 
Science предлагает качество и глубину контента для исследователей, авторов, 
издателей и учреждений. Включение Известия НАН РК. Серия геологии и технических 
наук в Emerging Sources Citation Index демонстрирует нашу приверженность к наиболее 
актуальному и влиятельному контенту по геологии и техническим наукам для нашего 
сообщества.
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Бас редактор:
МҰТАНОВ Ғалымқайыр Мұтанұлы, техника ғылымдарының докторы, профессор, ҚР ҰҒА 

академигі, ҚР БҒМ ҒК «Ақпараттық және есептеу технологиялары институты» бас директорының 
м.а. (Алматы, Қазақстан)  Н=5

Редакция алқасы:
ҚАЛИМОЛДАЕВ  Мақсат  Нұрәділұлы  (бас  редактордың  орынбасары),  физика-математика 

ғылымдарының  докторы,  профессор,  ҚР  ҰҒА  академигі,  ҚР  БҒМ  ҒК  «Ақпараттық  және  есептеу 
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Қазақстан) Н=3

ВОЙЧИК  Вальдемар,  техника  ғылымдарының  докторы  (физика),  Люблин  технологиялық 
университетінің профессоры (Люблин, Польша) H=23

БОШКАЕВ Қуантай Авғазыұлы, Ph.D. Теориялық және ядролық физика кафедрасының доценті, 
әл-Фараби  атындағы Қазақ ұлттық университеті (Алматы, Қазақстан) Н-10

QUEVEDO Hemando, профессор, Ядролық ғылымдар институты (Мехико, Мексика) Н=28
ЖҮСІПОВ Марат Абжанұлы,  физика-математика  ғылымдарының  докторы,  теориялық  және 

ядролық  физика  кафедрасының  профессоры,  әл-Фараби    атындағы  Қазақ  ұлттық  университеті 
(Алматы, Қазақстан) Н=7

КОВАЛЕВ Александр Михайлович, физика-математика ғылымдарының докторы, Украина ҰҒА 
академигі, Қолданбалы математика және механика институты (Донецк, Украина) Н=5

МИХАЛЕВИЧ  Александр  Александрович,  техника  ғылымдарының  докторы,  профессор, 
Беларусь ҰҒА академигі (Минск, Беларусь) Н=2

РАМАЗАНОВ Тілекқабыл Сәбитұлы, физика-математика ғылымдарының докторы, профессор, 
ҚР  ҰҒА  академигі,  әл-Фараби    атындағы  Қазақ  ұлттық  университетінің  ғылыми-инновациялық 
қызмет жөніндегі проректоры, (Алматы, Қазақстан) Н=26

ТАКИБАЕВ  Нұрғали  Жабағаұлы,  физика-математика  ғылымдарының  докторы,  профессор, 
ҚР ҰҒА академигі, әл-Фараби  атындағы Қазақ ұлттық университеті (Алматы, Қазақстан) Н=5

ТИГИНЯНУ Ион Михайлович, физика-математика ғылымдарының докторы, академик, Молдова 
ғылым Академиясының президенті, Молдова техникалық университеті (Кишинев, Молдова) Н=42

ХАРИН  Станислав  Николаевич,  физика-математика  ғылымдарының  докторы,  профессор, ҚР 
ҰҒА академигі, Қазақстан-Британ техникалық университеті (Алматы, Қазақстан) Н=10

ДАВЛЕТОВ  Асқар  Ербуланович, физика-математика  ғылымдарының  докторы,  профессор, 
әл-Фараби  атындағы Қазақ ұлттық университеті (Алматы, Қазақстан) Н=12

КАЛАНДРА  Пьетро,  Ph.D  (физика),  Наноқұрылымды  материалдарды  зерттеу  институтының 
профессоры (Рим, Италия) H=26
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SOME PROBLEMS IN DESCRIBING VARIOUS PHYSICAL PROCESSES WITH SIMILAR 
NONLINEAR WAVE PROPAGATION MODELS

Abstract. The article provides a generalized presentation of the results of the authors’ research to identify 
typical situations in the construction of mathematical models of various physical processes that can lead to 
equations with solutions in the form of moving nonlinear waves.

The problems of taking into account relaxation times and long-range interactions of structural elements 
of media in the mathematical description of the phenomena of mass, heat and momentum transfer are of 
great scientific and practical interest. The analysis shows that these issues are especially relevant when 
creating adequate mathematical models of high-intensity fast technological processes in conditions when 
the correctness of using methods of equilibrium thermodynamics becomes problematic. For the first time, 
sufficient conditions were established for the derivation of the perturbed KdV and Witham equations 
describing nonlinear wave propagation for transport phenomena in physico-chemical systems in the case of 
a low-intensity bottom mass source and with a quadratic relaxation function.

It is shown that the presence of a weak spatial nonlocality of the medium plays a fundamental role in the 
derivation of Whitham-type equations. The properties of a nonlocal integral relation for the flow of matter in 
a physicochemical system with a small deviation from the equilibrium state for a nonlinear relaxation have 
been established. 

The kinetic equations of aggregation processes in the nonlocal form have been studied too. Comparing 
the obtained equations with the previously known kinetic equations for the aggregation processes, it can be 
concluded that account of different time delays for clusters of different orders significantly changes the form 
of the kinetic equations. This circumstance can especially manifest itself at the initial moment.

Key words: Physical and chemical processes, dissipative fluxes, transport equations,  viscous liquids.

 Introduction. The paper gives a generalized presentation of the authors’ research results on identifying 
the typical situations while building mathematical models of various physical processes which can lead to 
equations with solutions in the form of moving nonlinear waves [1-4].

Examples of four different physical problems are considered, demonstrating a deep hidden analogy 
in the process of mathematical modeling. The derivations of the constitutive equations of the models and 
predictive analysis of the behavior of the solutions have been submitted. The methods for their asymptotic 
study developed by the authors applying to the considered problems have been also described.

 The first problem is the derivation of a new basic equation for the propagation of nonlinear waves in an 
isothermal thin layer of an in viscid fluid in the presence of a source of low intensity mass on the reference 
surface of the flow and the active free surface, as well as the asymptotic study of solutions of the derived 
equation for describing the evolution of single nonlinear waves [4-6]. The novelty of the problem statement is 
due to the account of the activity of the free surface, which, in turn, is induced by the course of mass transfer 
processes at the interface between the liquid and vapor phases. This interpretation of surface activity opens up 
prospects for the practical use of the results of this section as the basis for engineering methods for calculating 
mass transfer equipment.



104

N E W S  of theNationalAcademy of Sciences of the Republicof Kazakhstan

The second problem is to derive a new basic equation for wave propagation in viscous nonisothermal 
condensate films and to give an asymptotic study of its wave solutions [5-7].

The novelty of this formulation of the problem is due to taking into account the combined effect of the 
source of mass and appropriate increase in the flow rate of the liquid in the layer induced by the phase transition 
at the “liquid-vapor” interface, and of influence of the variable viscosity due to the non-isothermality of the
liquid film.

The practical significance of this problem lies in the possibility of using the developed mathematical 
model as a basis for engineering methods for calculating condensation and evaporation processes in thin 
layers of viscous liquids [7, 8].

The third problem is the derivation and asymptotic analysis of the behavior of solutions of the equation 
described propagation of nonlinear waves in systems with nonlocal effects in the form of a modified integro-
differential Whitham equation [9-12]. The novelty of the problem statement is due to the nonlinearity of the 
supposed relaxation function in the kernel of the integral operator [13, 14].

The fourth problem is the derivation and asymptotic study of nonlinear equations of evolution of the 
concentration of clusters of different orders in systems with nonlocality effects in the aggregation processes 
[15-20]. The novelty of the problem statement is due to taking into account synchronized and asynchronous 
delays in the growth of clusters, as well as taking into account the influence of their ages on aggregation
activity.

The deep unity of the all four problems and appropriate mathematical models is due to the consideration 
of the influence of variable control parameters of mathematical models on the form of basic evolutionary 
equations describing the propagation of nonlinear waves in systems, as well as on the form and behavior of 
the solutions. The content of this unity is revealed when interpreting the variability of the control parameters 
in terms of the presence of sources and nonlocality effects.

Materials and methods. A review of the literature and an analysis of the known results show that both the 
increase in mass in the liquid flow and the non-isothermal nature of the process can have a great influence on 
the stability of the waveless regime of the thin layer liquid flow. This is especially true for flows accompanied 
by heat and mass transfer processes, as well as phase transitions [25-30].

The problem of the potential flow of a horizontal thin layer of an ideal fluid along the supporting surface 
with a weak source of mass at the bottom is considered. The equations describing such a flow with a free 
surface read as follows.

Continuity equation

0=+ yyxx ϕϕ .                                                          (1)

Boundary condition on a solid wall (with no adhesion condition in the presence of a bottom mass source)

( )xhyqh yxx −==+     ;ϕϕ (2)        

Dynamic boundary condition on a free surface			

( ) 0
2
1 22 =+++ yxt q ϕϕηϕ .     (3)

Kinematic boundary condition on a free surface

0=−+ yxxt ϕηϕη , (4)

where q  is the potential of the fluid velocity; q  - density of mass flux through a solid surface; ( )xhy −=

- the equation describing the bottom profile; ( )tx,η - perturbed free surface profile.
The value of the mass flux density depends on the physical mechanism of the processes occurring in 

the bottom area. The simplest form of the corresponding functional dependence can be obtained from the 
condition:

The novelty of this formulation of the problem is due to taking into account the combined 
effect of the source of mass and appropriate increase in the flow rate of the liquid in the layer 
induced by the phase transition at the “liquid-vapor” interface, and of influence of the variable 
viscosity due to the non-isothermality of the liquid film.

The practical significance of this problem lies in the possibility of using the developed 
mathematical model as a basis for engineering methods for calculating condensation and
evaporation processes in thin layers of viscous liquids [7, 8].

The third problem is the derivation and asymptotic analysis of the behavior of solutions of 
the equation described propagation of nonlinear waves in systems with nonlocal effects in the form 
of a modified integro-differential Whitham equation [9-12]. The novelty of the problem statement is
due to the nonlinearity of the supposed relaxation function in the kernel of the integral operator [13,
14].

The fourth problem is the derivation and asymptotic study of nonlinear equations of 
evolution of the concentration of clusters of different orders in systems with nonlocality effects in
the aggregation processes [15-20]. The novelty of the problem statement is due to taking into 
account synchronized and asynchronous delays in the growth of clusters, as well as taking into 
account the influence of their ages on aggregation activity.

The deep unity of the all four problems and appropriate mathematical models is due to the 
consideration of the influence of variable control parameters of mathematical models on the form of 
basic evolutionary equations describing the propagation of nonlinear waves in systems, as well as
on the form and behavior of the solutions. The content of this unity is revealed when interpreting
the variability of the control parameters in terms of the presence of sources and nonlocality effects.

Materials and methods. A review of the literature and an analysis of the known results
show that both the increase in mass in the liquid flow and the non-isothermal nature of the process 
can have a great influence on the stability of the waveless regime of the thin layer liquid flow. This 
is especially true for flows accompanied by heat and mass transfer processes, as well as phase
transitions [25-30].

The problem of the potential flow of a horizontal thin layer of an ideal fluid along the 
supporting surface with a weak source of mass at the bottom is considered. The equations 
describing such a flow with a free surface read as follows.

Continuity equation
0=+ yyxx  . (1)

Boundary condition on a solid wall (with no adhesion condition in the presence of a bottom 
mass source)

( )xhyqh yxx −==+ ;
(2)

Dynamic boundary condition on a free surface

( ) 0
2
1 22 =+++ yxt q  . (3)

Kinematic boundary condition on a free surface
0=−+ yxxt  , (4)

where is the potential of the fluid velocity; q - density of mass flux through a solid surface; 
( )xhy −= - the equation describing the bottom profile; ( )tx, - perturbed free surface profile.

The value of the mass flux density depends on the physical mechanism of the processes 
occurring in the bottom area. The simplest form of the corresponding functional dependence can be
obtained from the condition:

kVVn = .      (5)
Physically, a similar condition can be interpreted as the proportionality of the washout rate

(i.e., the normal component of the fluid velocity immediately near the bottom) and the tangential

     			 (5)
Physically, a similar condition can be interpreted as the proportionality of the washout rate (i.e., the 

normal component of the fluid velocity immediately near the bottom) and the tangential component of the 
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fluid velocity in the bottom area. This condition has a physical meaning, since the no-slip condition is not 
imposed for an ideal fluid.

Let’s consider further long-wave approximation and introduce two small parameters:

122
0 <<= µlh .            

10 <<= εha .            

Let us assume also that both small parameters are of the same order of smallness, and the intensity factor 
of the mass flow at the bottom is of a higher order, i.e.

εµ1kk = µε =µε = , µε = .                                                          					     (6)

Under the assumption of weak nonlinearity, the bottom profile should change slowly, i.e. ( )xhh ε= .
The appropriate dimensionless variables read

component of the fluid velocity in the bottom area. This condition has a physical meaning, since the
no-slip condition is not imposed for an ideal fluid.

Let’s consider further long-wave approximation and introduce two small parameters:
122

0 = lh .                 

10 = ha .            

Let us assume also that both small parameters are of the same order of smallness, and the
intensity factor of the mass flow at the bottom is of a higher order, i.e.

1kk = ,  = . (6)

Under the assumption of weak nonlinearity, the bottom profile should change slowly, i.e.
( )xhh = .
The appropriate dimensionless variables read

xlx→   ,   0
0

gh
h
a →    ,     

0gh
ltt →      , 0yhy → ,  a → ,  0hhh → , (7)

Let’s introduce now a special self-similar variable  depending on slow coordinates xX = ,
tT = .
By eliminating the secular terms in the second and higher orders, we obtain the basic equation

of wave propagation in the layer

=





 −+−   UHHUU

H
U XT

XTX
X

22

3
1

42
3 ( ) U

H
HkH

X

XXXXT







 −+−



2
1 , (8)

For the obtained relation (8) to be satisfied in the zero order, the following equality, playing
the role of the dispersion relation, should be fulfilled

022 =− XT H . (9)
Thus, for the accepted order of smallness of the density of the mass source at the bottom, its

effect on the nature of the propagation of nonlinear waves on the surface of the layer is described
within the framework of the general structure of the perturbed Korteweg-de Vries equation (when
choosing 0T and  0X ). 

If we assume a lower order of smallness for the source of mass, the structure of the
evolutionary equations (8, 9) will be destroyed. In the following orders, we obtain a system of linear
recurrent equations; these equations describe decreasing or increasing disturbances. In any case, the
structure of the nonlinear evolutionary equations is destroyed, which can be interpreted as the
damping effect of the mass source on the nonlinear wave regime.

The structure of the nonlinear evolutionary equation can change significantly under the 
influence of effects occurring on the free surface. Then, after similar transformations, from the 
conditions for excluding secular growth, we arrive at an evolutionary equation that differs from the
perturbed Korteweg-de Vries equation obtained above.
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
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= . (10)

Using the expansion of differential operators in the vicinity of the critical values of the control
parameters and then excluding the secular terms, we arrive at amplitude equations (3) of the type
that describe various nonlinear wave processes with dispersion. However, there are no soliton 
solutions to such equations. 

The stability of such wave flows depends on the order of the control parameter

,         		  (7)

Let’s introduce now a special self-similar variable θ  depending on slow coordinates  xX ε= , tT ε= .
By eliminating the secular terms in the second and higher orders, we obtain the basic equation of wave 

propagation in the layer
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For the obtained relation (8) to be satisfied in the zero order, the following equality, playing the role of the 
dispersion relation, should be fulfilled

022 =− XT Hθθ .                                              					 (9)

Thus, for the accepted order of smallness of the density of the mass source at the bottom, its effect on the 
nature of the propagation of nonlinear waves on the surface of the layer is described within the framework 

of the general structure of the perturbed Korteweg-de Vries equation (when choosing 0<Tθ  and  0>Xθ ). 
If we assume a lower order of smallness for the source of mass, the structure of the evolutionary 

equations (8, 9) will be destroyed. In the following orders, we obtain a system of linear recurrent equations; 
these equations describe decreasing or increasing disturbances. In any case, the structure of the nonlinear 
evolutionary equations is destroyed, which can be interpreted as the damping effect of the mass source on 
the nonlinear wave regime.

    The structure of the nonlinear evolutionary equation can change significantly under the influence of 
effects occurring on the free surface. Then, after similar transformations, from the conditions for excluding 
secular growth, we arrive at an evolutionary equation that differs from the perturbed Korteweg-de Vries 
equation obtained above.

=





 −+− θθθθ θθθθθ UHHUU

H
U XT

XTX
X

22

3
1

42
3

component of the fluid velocity in the bottom area. This condition has a physical meaning, since the
no-slip condition is not imposed for an ideal fluid.

Let’s consider further long-wave approximation and introduce two small parameters:
122

0 = lh .                 

10 = ha .            

Let us assume also that both small parameters are of the same order of smallness, and the
intensity factor of the mass flow at the bottom is of a higher order, i.e.

1kk = ,  = . (6)

Under the assumption of weak nonlinearity, the bottom profile should change slowly, i.e.
( )xhh = .
The appropriate dimensionless variables read

xlx→ ,   0
0

gh
h
a → ,     

0gh
ltt → , 0yhy → ,  a → ,  0hhh → , (7)

Let’s introduce now a special self-similar variable  depending on slow coordinates xX = ,
tT = .
By eliminating the secular terms in the second and higher orders, we obtain the basic equation

of wave propagation in the layer
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For the obtained relation (8) to be satisfied in the zero order, the following equality, playing
the role of the dispersion relation, should be fulfilled

022 =− XT H . (9)
Thus, for the accepted order of smallness of the density of the mass source at the bottom, its

effect on the nature of the propagation of nonlinear waves on the surface of the layer is described
within the framework of the general structure of the perturbed Korteweg-de Vries equation (when
choosing 0T and  0X ). 

If we assume a lower order of smallness for the source of mass, the structure of the
evolutionary equations (8, 9) will be destroyed. In the following orders, we obtain a system of linear
recurrent equations; these equations describe decreasing or increasing disturbances. In any case, the
structure of the nonlinear evolutionary equations is destroyed, which can be interpreted as the
damping effect of the mass source on the nonlinear wave regime.

The structure of the nonlinear evolutionary equation can change significantly under the 
influence of effects occurring on the free surface. Then, after similar transformations, from the 
conditions for excluding secular growth, we arrive at an evolutionary equation that differs from the
perturbed Korteweg-de Vries equation obtained above.
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Using the expansion of differential operators in the vicinity of the critical values of the control
parameters and then excluding the secular terms, we arrive at amplitude equations (3) of the type
that describe various nonlinear wave processes with dispersion. However, there are no soliton 
solutions to such equations. 

The stability of such wave flows depends on the order of the control parameter

.                    				 (10)

Using the expansion of differential operators in the vicinity of the critical values ​​of the control parameters 
and then excluding the secular terms, we arrive at amplitude equations  (3) of the type that describe various 
nonlinear wave processes with dispersion. However, there are no soliton solutions to such equations. 

The stability of such wave flows depends on the order of the control parameter
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= . (11)

As a conclusion from this analysis and (11), we can conclude that the nature of propagation
and evolution of nonlinear waves in systems with sources of mass depends significantly both on the
order of the intensity of the sources and on the type of boundary conditions. Moreover, in different 
situations, even the form of evolutionary equations can change significantly [6,8,10].

Evolution equations for nonlinear waves in viscous condensate films
Earlier it was shown that when a condensate film flows down, a situation may arise when the

stationary Nusselt problem has no solution, and it can be assumed that nonlinear waves can be
generated in regions of high temperature and viscosity gradients. The complexity of the analysis of
wave solutions in the case of film condensation is that in the presence of a mass source, the film 
consumption increases. As a result, there are no constant solutions. It is also necessary to take into 
account the fact that in the mathematical modeling of film condensation we are dealing with an
essentially dissipative system and, secondly, the resulting systems of equations cannot be decoupled
in principle due to the presence of sources.

The equations of motion and continuity in the long-wave approximation:
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Here sK is the surface curvature. 
Equation of material balance for condensate
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The intensity of the source of mass reads
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Let’s looking for the velocity profile over the film thickness in the form

( )hxfUU S ;,= .

The resulting integral evolutionary relation linked the film thickness and flow rate reads
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At a sufficient distance from the initial point, the intensity of the mass source during film 
condensation is, as a rule, low. This made it possible to introduce into consideration a new small
parameter 0jrT  = in the work, where 0j is the averaged flow rate of condensate in the
undisturbed film in the area under consideration. This approach is additionally justified due to the
large values of the phase transition heat.

.             (11)

As a conclusion from this analysis and (11), we can conclude that the nature of propagation and evolution 
of nonlinear waves in systems with sources of mass depends significantly both on the order of the intensity 
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of the sources and on the type of boundary conditions. Moreover, in different situations, even the form of 
evolutionary equations can change significantly [6,8,10].

Evolution equations for nonlinear waves in viscous condensate films
Earlier it was shown that when a condensate film flows down, a situation may arise when the stationary 

Nusselt problem has no solution, and it can be assumed that nonlinear waves can be generated in regions of 
high temperature and viscosity gradients. The complexity of the analysis of wave solutions in the case of film 
condensation is that in the presence of a mass source, the film consumption increases. As a result, there are 
no constant solutions. It is also necessary to take into account the fact that in the mathematical modeling of 
film condensation we are dealing with an essentially dissipative system and, secondly, the resulting systems 
of equations cannot be decoupled in principle due to the presence of sources.

The equations of motion and continuity in the long-wave approximation:
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in principle due to the presence of sources.
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Let’s looking for the velocity profile over the film thickness in the form
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At a sufficient distance from the initial point, the intensity of the mass source during film 
condensation is, as a rule, low. This made it possible to introduce into consideration a new small
parameter 0jrT  = in the work, where 0j is the averaged flow rate of condensate in the
undisturbed film in the area under consideration. This approach is additionally justified due to the
large values of the phase transition heat.
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As a conclusion from this analysis and (11), we can conclude that the nature of propagation
and evolution of nonlinear waves in systems with sources of mass depends significantly both on the
order of the intensity of the sources and on the type of boundary conditions. Moreover, in different 
situations, even the form of evolutionary equations can change significantly [6,8,10].

Evolution equations for nonlinear waves in viscous condensate films
Earlier it was shown that when a condensate film flows down, a situation may arise when the

stationary Nusselt problem has no solution, and it can be assumed that nonlinear waves can be
generated in regions of high temperature and viscosity gradients. The complexity of the analysis of
wave solutions in the case of film condensation is that in the presence of a mass source, the film 
consumption increases. As a result, there are no constant solutions. It is also necessary to take into 
account the fact that in the mathematical modeling of film condensation we are dealing with an
essentially dissipative system and, secondly, the resulting systems of equations cannot be decoupled
in principle due to the presence of sources.
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At a sufficient distance from the initial point, the intensity of the mass source during film 
condensation is, as a rule, low. This made it possible to introduce into consideration a new small
parameter 0jrT  = in the work, where 0j is the averaged flow rate of condensate in the
undisturbed film in the area under consideration. This approach is additionally justified due to the
large values of the phase transition heat.
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At a sufficient distance from the initial point, the intensity of the mass source during film 
condensation is, as a rule, low. This made it possible to introduce into consideration a new small
parameter 0jrT  = in the work, where 0j is the averaged flow rate of condensate in the
undisturbed film in the area under consideration. This approach is additionally justified due to the
large values of the phase transition heat.
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Let’s looking for the velocity profile over the film thickness in the form
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At a sufficient distance from the initial point, the intensity of the mass source during film 
condensation is, as a rule, low. This made it possible to introduce into consideration a new small
parameter 0jrT  = in the work, where 0j is the averaged flow rate of condensate in the
undisturbed film in the area under consideration. This approach is additionally justified due to the
large values of the phase transition heat.

.                                			 (16)

At a sufficient distance from the initial point, the intensity of the mass source during film condensation is, 

as a rule, low. This made it possible to introduce into consideration a new small parameter 0jrT ρλε ∆=

in the work, where 0j  is the averaged flow rate of condensate in the undisturbed film in the area under 
consideration. This approach is additionally justified due to the large values ​​of the phase transition heat.

To construct mathematical models capable of describing the evolution of wave perturbations of the 
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If the temperature of the support surface is not constant, then it is necessary to include the dependence on 
the film thickness in the expression for the self-similar velocity profile [12].

The paper establishes the following features of the developed mathematical model.
First, in addition to the usual convective nonlinearities, nonlinear terms appear in the equations due to the 

pumping of energy and mass due to an increase in the flow rate of the liquid in the film.
Secondly, energy is pumped into the system due to another source - gravitational forces. Due to this 

and other reasons, the resulting system cannot be decoupled within the framework of formal mathematical 
calculations.

However, in this work, this was done on the basis of the results of the analysis of the linearized problem and 
remaining within the framework of an adequate description of the qualitative behavior of small perturbations 
of the stationary solution.

There were introduced new stretched variables tTxX εε ==     ,  and fast variable ( ) εθη TX ,= .
In this work, the conditions for the solvability of the resulting system are established in the form of a new 

dispersion relation:

To construct mathematical models capable of describing the evolution of wave perturbations
of the condensate film profile, an asymptotic analysis of (5) was carried out using the methods of
secular perturbation theory.

In contrast to previously known works, second-order terms are retained to describe the
evolution of a wave packet in the weakly nonlinear approximation. As a result, we get
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If the temperature of the support surface is not constant, then it is necessary to include the 
dependence on the film thickness in the expression for the self-similar velocity profile [12].

The paper establishes the following features of the developed mathematical model.
First, in addition to the usual convective nonlinearities, nonlinear terms appear in the

equations due to the pumping of energy and mass due to an increase in the flow rate of the liquid in 
the film.

Secondly, energy is pumped into the system due to another source - gravitational forces. Due
to this and other reasons, the resulting system cannot be decoupled within the framework of formal 
mathematical calculations.

However, in this work, this was done on the basis of the results of the analysis of the
linearized problem and remaining within the framework of an adequate description of the 
qualitative behavior of small perturbations of the stationary solution.

There were introduced new stretched variables tTxX  == , and fast variable
( )  TX ,= .

In this work, the conditions for the solvability of the resulting system are established in the 
form of a new dispersion relation:
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As a result, the new basic equation for the evolution and spatial variation of the condensate
film thickness has been obtained
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The newly obtained equations (18,19) is structurally close to the Korteweg-de-Vries equation
with a nonlinear perturbation of the right-hand side and slowly varying coefficients. The presence
of such a perturbation leads to the fact that the dispersion relation of the last equation contains a 
nonzero imaginary part, and an undamped wave solution can exist only on the neutral line and in 
the region of increasing amplitudes. According to the well-known classification, the instability of 
the solution to the obtained problem belongs to the category of dissipative instability.

Results. The problems of taking into account relaxation times and long-range interactions of
structural elements of media in the mathematical description of the phenomena of transfer of mass, 
heat and momentum are of great scientific and practical interest. Similar problems arise when
describing the development of internal stresses and the formation of cracks in solids. The analysis 
shows that these issues are especially relevant when creating adequate mathematical models of 
high-intensity fast technological processes in conditions when the correctness of using the methods 
of equilibrium thermodynamics becomes problematic. It was previously discovered [12] that an 
equation of this type can be obtained by describing the propagation of nonlinear waves in media
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If the temperature of the support surface is not constant, then it is necessary to include the 
dependence on the film thickness in the expression for the self-similar velocity profile [12].

The paper establishes the following features of the developed mathematical model.
First, in addition to the usual convective nonlinearities, nonlinear terms appear in the

equations due to the pumping of energy and mass due to an increase in the flow rate of the liquid in 
the film.

Secondly, energy is pumped into the system due to another source - gravitational forces. Due
to this and other reasons, the resulting system cannot be decoupled within the framework of formal 
mathematical calculations.

However, in this work, this was done on the basis of the results of the analysis of the
linearized problem and remaining within the framework of an adequate description of the 
qualitative behavior of small perturbations of the stationary solution.

There were introduced new stretched variables tTxX  == , and fast variable
( )  TX ,= .

In this work, the conditions for the solvability of the resulting system are established in the 
form of a new dispersion relation:

0

1

5

3

3241
=

−

+





+++

z
TX

XXXT




















. (18)

As a result, the new basic equation for the evolution and spatial variation of the condensate
film thickness has been obtained 
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The newly obtained equations (18,19) is structurally close to the Korteweg-de-Vries equation
with a nonlinear perturbation of the right-hand side and slowly varying coefficients. The presence
of such a perturbation leads to the fact that the dispersion relation of the last equation contains a 
nonzero imaginary part, and an undamped wave solution can exist only on the neutral line and in 
the region of increasing amplitudes. According to the well-known classification, the instability of 
the solution to the obtained problem belongs to the category of dissipative instability.

Results. The problems of taking into account relaxation times and long-range interactions of
structural elements of media in the mathematical description of the phenomena of transfer of mass, 
heat and momentum are of great scientific and practical interest. Similar problems arise when
describing the development of internal stresses and the formation of cracks in solids. The analysis 
shows that these issues are especially relevant when creating adequate mathematical models of 
high-intensity fast technological processes in conditions when the correctness of using the methods 
of equilibrium thermodynamics becomes problematic. It was previously discovered [12] that an 
equation of this type can be obtained by describing the propagation of nonlinear waves in media
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The newly obtained equations (18,19) is structurally close to the Korteweg-de-Vries equation with 
a nonlinear perturbation of the right-hand side and slowly varying coefficients. The presence of such a 
perturbation leads to the fact that the dispersion relation of the last equation contains a nonzero imaginary 
part, and an undamped wave solution can exist only on the neutral line and in the region of increasing 
amplitudes. According to the well-known classification, the instability of the solution to the obtained problem 
belongs to the category of dissipative instability.

Results. The problems of taking into account relaxation times and long-range interactions of structural 
elements of media in the mathematical description of the phenomena of transfer of mass, heat and momentum 
are of great scientific and practical interest. Similar problems arise when describing the development of 
internal stresses and the formation of cracks in solids. The analysis shows that these issues are especially 
relevant when creating adequate mathematical models of high-intensity fast technological processes in 
conditions when the correctness of using the methods of equilibrium thermodynamics becomes problematic. 
It was previously discovered [12] that an equation of this type can be obtained by describing the propagation 
of nonlinear waves in media with spatial nonlocality by the method of relaxation transfer kernels in the case 
of a linear relaxation function. However, this assumption does not agree well with the general nonlinear 
nature of the developed models.

The main scientific contribution of this section is that sufficient assumptions were established for the 
correct derivation of the modified Whitham equation describing the nonlinear propagation of waves in 
transport phenomena in physicochemical systems. It is shown that the presence of spatial nonlocality of the 
medium can play a fundamental role in the derivation of Whitham-type equations [2, 3, 4]. The questions of 
physical interpretation of the investigated model are also considered. It is shown that the manifestation of 
nonlocal effects in the systems under study can be substantiated and obtained as a result of the presence of 
domains with a complex spatial structure, as well as the presence of heat and mass sources.

The driving force of substance transfer is the local deviation of the control parameter u of the process, 
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which characterizes the state of equilibrium of the system. Temperature is such a parameter for thermal 
processes; for mass transfer processes - chemical potential; for the propagation of internal defects in solids, 
these are equilibrium internal stresses.

u=∆ν .
Then the expression for the flow of matter at small deviations from equilibrium, but taking into account 

various kinds of non-local effects, in particular, in media with memory, can be written in the form [12]:

with spatial nonlocality by the method of relaxation transfer kernels in the case of a linear relaxation
function. However, this assumption does not agree well with the general nonlinear nature of the 
developed models.

The main scientific contribution of this section is that sufficient assumptions were established
for the correct derivation of the modified Whitham equation describing the nonlinear propagation of
waves in transport phenomena in physicochemical systems. It is shown that the presence of spatial
nonlocality of the medium can play a fundamental role in the derivation of Whitham-type equations
[2, 3, 4]. The questions of physical interpretation of the investigated model are also considered. It is
shown that the manifestation of nonlocal effects in the systems under study can be substantiated and
obtained as a result of the presence of domains with a complex spatial structure, as well as the
presence of heat and mass sources.

The driving force of substance transfer is the local deviation of the control parameter u of the
process, which characterizes the state of equilibrium of the system. Temperature is such a parameter
for thermal processes; for mass transfer processes - chemical potential; for the propagation of 
internal defects in solids, these are equilibrium internal stresses.

u= .

Then the expression for the flow of matter at small deviations from equilibrium, but taking
into account various kinds of non-local effects, in particular, in media with memory, can be written
in the form [12]:
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For the successful implementation of further transformations, it is necessary to specify the
commutation condition for the differentiation and convolution operators in equation (1). Since at
this stage of transformations the form of the kernels of the integral operator is unknown, this 
condition will need to be additionally checked for a specific type of physically significant kernels. 
Then equation (20) can be rewritten as
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Further development of the theory requires a refinement of the form of the kernels of the
operator in equation (21). In order not to violate the logic of the nonlinear approach, in our work for 
the first time, in contrast to the work of Brener [12], the relaxation equation is written in a general 
form.
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( )• must be a positive non-decreasing function.
Then it can be shown that the physically significant form of the equation looks as follows

( ) ( ) ( ) ( ) ( ) ( ) ( ) 02
,2,1)( =+ 

 kkkkk GYGYG
d
d , (23)

where, 0)(,1 kY and 0)(,2 kY .
It can be shown that since the kernels of the integral operator in the transport equation are

obtained under the assumption of weak nonlocality, the system (21, 23) has a natural small
parameter Rr )0(= .
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with spatial nonlocality by the method of relaxation transfer kernels in the case of a linear relaxation
function. However, this assumption does not agree well with the general nonlinear nature of the 
developed models.

The main scientific contribution of this section is that sufficient assumptions were established
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commutation condition for the differentiation and convolution operators in equation (1). Since at
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Here )0(r  is the maximum radius that should be taken into account when describing the nonlocal interaction,
R  is the characteristic scale of the macroscopic system.

It was proved by us with the help of the detail consideration that the commutation condition for the 
differentiation and convolution operators for the kernels of all the considered quadratic forms is fulfilled.

In accordance with the chosen strategy of excluding members of a higher than the second order, the 
following basic equation was obtained 
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The fundamental moment and scientific contribution of the performed modeling of relaxation
kernels is that a wider class of relaxation functions was considered than was done earlier.

Taking into account the specifics of the behavior of all the considered types of kernels in 
integral operators under the restriction of a sufficiently fast decrease in )(kr with an increase in the 
number k, the following transfer equation has been derived
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where  is the normalizing coefficient. 
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With such a rearrangement, the appearance of the kernels does not fundamentally change. At
0=I

equation (34) takes the form (20) of the usual Whitham equation.
Further, after a number of cumbersome but simple in mathematical technique rearrangements,

the following ordinary differential equation succeed to be obtained
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where the parameters ,  are depend on the type of relaxation function.
The subsequent analysis using the phase plane method showed that equations of this type (27)

have solutions in the form of a solitary traveling wave capable of propagating over considerable
distances with a slight change in profile [2, 4].

4. Nonlocal mathematical models of aggregation processes in dispersed media
Particle aggregation is widespread in various chemical engineering processes, metallurgy and

nature, and there are many approaches to modeling this phenomenon. At the same time, some 
important aspects of the description of aggregation processes have not yet been developed. One of
such important, but poorly worked out issues is the nonlocality of aggregation processes in time.

However, without taking this aspect into account, it is impossible to describe the effect of the
characteristic relaxation times of the formation of aggregates on the kinetics of the process. This is
especially true when applied to nanotechnological processes.

The problem considered in the section is devoted to the development and analysis of a
nonlocal modification of the Smoluchowski equation, which is the basic model of the kinetics of 
aggregation processes in dispersed systems. The work is based on a nonlocal model based on the
Smoluchowski equation, proposed earlier in the works [17, 18].

At the same time, it is firstly in this work, the cases of synchronous and asynchronous delays
in the formation of aggregates - clusters of different orders in a single system are considered 
separately.

The generalized model in the form of an integro-differential equation is as follows:

. (24)

The fundamental moment and scientific contribution of the performed modeling of relaxation kernels is 
that a wider class of relaxation functions was considered than was done earlier.

Taking into account the specifics of the behavior of all the considered types of kernels in integral operators 
under the restriction of a sufficiently fast decrease in )(kr  with an increase in the number k, the following 
transfer equation has been derived
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where the parameters ,  are depend on the type of relaxation function.
The subsequent analysis using the phase plane method showed that equations of this type (27)

have solutions in the form of a solitary traveling wave capable of propagating over considerable
distances with a slight change in profile [2, 4].
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important aspects of the description of aggregation processes have not yet been developed. One of
such important, but poorly worked out issues is the nonlocality of aggregation processes in time.

However, without taking this aspect into account, it is impossible to describe the effect of the
characteristic relaxation times of the formation of aggregates on the kinetics of the process. This is
especially true when applied to nanotechnological processes.

The problem considered in the section is devoted to the development and analysis of a
nonlocal modification of the Smoluchowski equation, which is the basic model of the kinetics of 
aggregation processes in dispersed systems. The work is based on a nonlocal model based on the
Smoluchowski equation, proposed earlier in the works [17, 18].

At the same time, it is firstly in this work, the cases of synchronous and asynchronous delays
in the formation of aggregates - clusters of different orders in a single system are considered 
separately.
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where the parameters      , βα are depend on the type of relaxation function.
The subsequent analysis using the phase plane method showed that equations of this type (27) have

solutions in the form of a solitary traveling wave capable of propagating over considerable distances with a 
slight change in profile [2, 4].

4. Nonlocal mathematical models of aggregation processes in dispersed media
Particle aggregation is widespread in various chemical engineering processes, metallurgy and nature, and 
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iC denote the concentrations of i -mers, and aggregation kernels jiN , are functions of the 
delay times )( 1tt − and ( )2tt − . 

In our case, the characteristic times of aggregation and measures play the role of relaxation
times. The simplest model equation for the elements of the aggregation matrix can be constructed 
by analogy with the model equation for the transfer kernels:
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where 1ttsi −= 2tts j −=

In equation (29), the coefficients ir , along with the relaxation times ij , play the role of control
parameters of the "inertness" of clusters; the parameter f is responsible for the characteristics of 
media and particles.

The aggregation matrix satisfying Eq. (28), in the case of fast relaxation, has
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On the basis of the approach of relaxation transfer kernels, the main governing equation was
obtained in this work:
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Discussion. Asynchrony in the formation of clusters of different orders means that there is no
correlation between the relaxation times 21, tt in equation (28).

The subsequent analysis was based on the asymptotes of the integrals in (30). Namely, it is
assumed that for small relaxation times, the Laplace method can be used in the vicinity of the time
instant. But the immediate substitution of the expansion of the integrals in equation (30) requires the
multiplication of asymptotic sequences. Such a procedure is dangerous, as it can lead to a complete
loss of order when checking the approximation.

To solve this problem, a specific method has been developed by us that made it possible to
reduce equation (28) to a form free of the product of integrals:
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Further, using the Laplace method, we obtain asymptotic relations in which the orders of 
equations and approximations are concerted. 

As a result of further transformations, accompanied by a comparison of the smallness of
different relaxation times, the reduced master kinetic equation was obtained for the first time in this
work
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iC  denote the concentrations of i -mers, and aggregation kernels jiN ,  are functions of the delay times 

)( 1tt −  and ( )2tt − . 
In our case, the characteristic times of aggregation and measures play the role of relaxation times. The 

simplest model equation for the elements of the aggregation matrix can be constructed by analogy with the 
model equation for the transfer kernels:
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In our case, the characteristic times of aggregation and measures play the role of relaxation
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where 1ttsi −= 2tts j −=  
In equation (29), the coefficients ir , along with the relaxation times ij , play the role of control

parameters of the "inertness" of clusters; the parameter f is responsible for the characteristics of 
media and particles.

The aggregation matrix satisfying Eq. (28), in the case of fast relaxation, has
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On the basis of the approach of relaxation transfer kernels, the main governing equation was
obtained in this work:
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Discussion. Asynchrony in the formation of clusters of different orders means that there is no
correlation between the relaxation times 21, tt in equation (28).

The subsequent analysis was based on the asymptotes of the integrals in (30). Namely, it is
assumed that for small relaxation times, the Laplace method can be used in the vicinity of the time
instant. But the immediate substitution of the expansion of the integrals in equation (30) requires the
multiplication of asymptotic sequences. Such a procedure is dangerous, as it can lead to a complete
loss of order when checking the approximation.

To solve this problem, a specific method has been developed by us that made it possible to
reduce equation (28) to a form free of the product of integrals:












+






−−+






−=+   −−

2 2
,32,

1
21,2

2

2
exp)(

2
exp

2
1

jjijiijijjij
ii CIICatICICat

dt
dC

a
dt

Cd
 . (31)

Further, using the Laplace method, we obtain asymptotic relations in which the orders of 
equations and approximations are concerted. 

As a result of further transformations, accompanied by a comparison of the smallness of
different relaxation times, the reduced master kinetic equation was obtained for the first time in this
work
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where 2tts j −= 2tts j −=
In equation (29), the coefficients ijτ ij, along with the relaxation times ijτ ij, play the role of control parameters

of the “inertness” of clusters; the parameter f is responsible for the characteristics of media and particles.
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The aggregation matrix satisfying Eq. (28), in the case of fast relaxation, has
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On the basis of the approach of relaxation transfer kernels, the main governing equation was obtained in 
this work:
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iC denote the concentrations of i -mers, and aggregation kernels jiN , are functions of the 
delay times )( 1tt − and ( )2tt − . 

In our case, the characteristic times of aggregation and measures play the role of relaxation
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In equation (29), the coefficients ir , along with the relaxation times ij , play the role of control
parameters of the "inertness" of clusters; the parameter f is responsible for the characteristics of 
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On the basis of the approach of relaxation transfer kernels, the main governing equation was
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Discussion. Asynchrony in the formation of clusters of different orders means that there is no
correlation between the relaxation times 21, tt in equation (28).

The subsequent analysis was based on the asymptotes of the integrals in (30). Namely, it is
assumed that for small relaxation times, the Laplace method can be used in the vicinity of the time
instant. But the immediate substitution of the expansion of the integrals in equation (30) requires the
multiplication of asymptotic sequences. Such a procedure is dangerous, as it can lead to a complete
loss of order when checking the approximation.

To solve this problem, a specific method has been developed by us that made it possible to
reduce equation (28) to a form free of the product of integrals:
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Further, using the Laplace method, we obtain asymptotic relations in which the orders of 
equations and approximations are concerted. 

As a result of further transformations, accompanied by a comparison of the smallness of
different relaxation times, the reduced master kinetic equation was obtained for the first time in this
work
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iC denote the concentrations of i -mers, and aggregation kernels jiN , are functions of the 
delay times )( 1tt − and ( )2tt − . 

In our case, the characteristic times of aggregation and measures play the role of relaxation
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In equation (29), the coefficients ir , along with the relaxation times ij , play the role of control
parameters of the "inertness" of clusters; the parameter f is responsible for the characteristics of 
media and particles.
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On the basis of the approach of relaxation transfer kernels, the main governing equation was
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Discussion. Asynchrony in the formation of clusters of different orders means that there is no

correlation between the relaxation times 21, tt in equation (28).
The subsequent analysis was based on the asymptotes of the integrals in (30). Namely, it is

assumed that for small relaxation times, the Laplace method can be used in the vicinity of the time
instant. But the immediate substitution of the expansion of the integrals in equation (30) requires the
multiplication of asymptotic sequences. Such a procedure is dangerous, as it can lead to a complete
loss of order when checking the approximation.

To solve this problem, a specific method has been developed by us that made it possible to
reduce equation (28) to a form free of the product of integrals:
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Further, using the Laplace method, we obtain asymptotic relations in which the orders of 
equations and approximations are concerted. 

As a result of further transformations, accompanied by a comparison of the smallness of
different relaxation times, the reduced master kinetic equation was obtained for the first time in this
work
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Discussion. Asynchrony in the formation of clusters of different orders means that there is no correlation 
between the relaxation times 21, tt  in equation (28).

The subsequent analysis was based on the asymptotes of the integrals in (30). Namely, it is assumed 
that for small relaxation times, the Laplace method can be used in the vicinity of the time instant. But 
the immediate substitution of the expansion of the integrals in equation (30) requires the multiplication 
of asymptotic sequences. Such a procedure is dangerous, as it can lead to a complete loss of order when 
checking the approximation.

To solve this problem, a specific method has been developed by us that made it possible to reduce 
equation (28) to a form free of the product of integrals:
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iC denote the concentrations of i -mers, and aggregation kernels jiN , are functions of the 
delay times )( 1tt − and ( )2tt − . 

In our case, the characteristic times of aggregation and measures play the role of relaxation
times. The simplest model equation for the elements of the aggregation matrix can be constructed 
by analogy with the model equation for the transfer kernels:

0,
,

0
,,, =+




+



ji
ji

ji

j

ji
j

i

ji
i N

f
s

N
r

s
N

r


,                                                       (29)

where 1ttsi −= 2tts j −=

In equation (29), the coefficients ir , along with the relaxation times ij , play the role of control
parameters of the "inertness" of clusters; the parameter f is responsible for the characteristics of 
media and particles.

The aggregation matrix satisfying Eq. (28), in the case of fast relaxation, has
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On the basis of the approach of relaxation transfer kernels, the main governing equation was
obtained in this work:
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Discussion. Asynchrony in the formation of clusters of different orders means that there is no
correlation between the relaxation times 21, tt in equation (28).

The subsequent analysis was based on the asymptotes of the integrals in (30). Namely, it is
assumed that for small relaxation times, the Laplace method can be used in the vicinity of the time
instant. But the immediate substitution of the expansion of the integrals in equation (30) requires the
multiplication of asymptotic sequences. Such a procedure is dangerous, as it can lead to a complete
loss of order when checking the approximation.

To solve this problem, a specific method has been developed by us that made it possible to
reduce equation (28) to a form free of the product of integrals: 












+






−−+






−=+   −−

2 2
,32,

1
21,2

2

2
exp)(

2
exp

2
1

jjijiijijjij
ii CIICatICICat

dt
dC

a
dt

Cd
 . (31)

Further, using the Laplace method, we obtain asymptotic relations in which the orders of 
equations and approximations are concerted. 

As a result of further transformations, accompanied by a comparison of the smallness of
different relaxation times, the reduced master kinetic equation was obtained for the first time in this
work
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Further, using the Laplace method, we obtain asymptotic relations in which the orders of equations and 
approximations are concerted. 

As a result of further transformations, accompanied by a comparison of the smallness of different relaxation 
times, the reduced master kinetic equation was obtained for the first time in this work
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iC denote the concentrations of i -mers, and aggregation kernels jiN , are functions of the 
delay times )( 1tt − and ( )2tt − . 

In our case, the characteristic times of aggregation and measures play the role of relaxation
times. The simplest model equation for the elements of the aggregation matrix can be constructed 
by analogy with the model equation for the transfer kernels:
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where 1ttsi −= 2tts j −=

In equation (29), the coefficients ir , along with the relaxation times ij , play the role of control
parameters of the "inertness" of clusters; the parameter f is responsible for the characteristics of 
media and particles.

The aggregation matrix satisfying Eq. (28), in the case of fast relaxation, has
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On the basis of the approach of relaxation transfer kernels, the main governing equation was
obtained in this work:
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Discussion. Asynchrony in the formation of clusters of different orders means that there is no
correlation between the relaxation times 21, tt in equation (28).

The subsequent analysis was based on the asymptotes of the integrals in (30). Namely, it is
assumed that for small relaxation times, the Laplace method can be used in the vicinity of the time
instant. But the immediate substitution of the expansion of the integrals in equation (30) requires the
multiplication of asymptotic sequences. Such a procedure is dangerous, as it can lead to a complete
loss of order when checking the approximation.

To solve this problem, a specific method has been developed by us that made it possible to
reduce equation (28) to a form free of the product of integrals:
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Further, using the Laplace method, we obtain asymptotic relations in which the orders of 
equations and approximations are concerted. 

As a result of further transformations, accompanied by a comparison of the smallness of
different relaxation times, the reduced master kinetic equation was obtained for the first time in this
work
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Here T∗= τε ,  ∗= τ
a
1 , T is the characteristic time of the process, Tt=θ  is the dimensionless time 

Tt=θ , and dimensionless aggregation kernels jiji T ,
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The characteristic time of the initial period of the aggregation process, during which the

greatest influence of the nonlocality of the process is observed, reads:
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Modified model for the case of synchronous delays 
As a special case, the paper considers a modification of the Smoluchowski equation with a

synchronous time delay of aggregation of clusters of different orders, which is intended to describe
the effect of the characteristic time of the formation of aggregates on the kinetics of the process.

In this case, the master integro-differential equation takes the form [17]:
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Using the procedure for separate averaging over separate groups of indices the specific kinetic

equation of the third order in time has been obtained. 
The compact form of this equation reads
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A feature of the obtained equation (35) is the presence of solutions describing the 
propagation of perturbations with a finite velocity in the form of solitary waves [8]. 

Conclusion. In the submitted work, for the first time sufficient conditions were established
for the derivation of the perturbed KdV and Whitham equations describing the nonlinear 
propagation of waves for transport phenomena in physicochemical systems in the case of bottom 
mass source of low intensity and under the quadratic relaxation function. 

It is shown that the presence of a weak spatial nonlocality of the medium plays a
fundamental role in the derivation of Whitham-type equations. The properties of a nonlocal integral 
relation for the flow of matter in a physicochemical system with a small deviation from the 
equilibrium state for a nonlinear relaxation have been established. 

The kinetic equations of aggregation processes in the nonlocal form have been studied too. 
Comparing the obtained equations with the previously known kinetic equations for the aggregation 
processes, it can be concluded that account of different time delays for clusters of different orders
significantly changes the form of the kinetic equations. This circumstance can especially manifest
itself at the initial moment.
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A feature of the obtained equation (35) is the presence of solutions describing the 
propagation of perturbations with a finite velocity in the form of solitary waves [8]. 

Conclusion. In the submitted work, for the first time sufficient conditions were established
for the derivation of the perturbed KdV and Whitham equations describing the nonlinear 
propagation of waves for transport phenomena in physicochemical systems in the case of bottom 
mass source of low intensity and under the quadratic relaxation function. 

It is shown that the presence of a weak spatial nonlocality of the medium plays a
fundamental role in the derivation of Whitham-type equations. The properties of a nonlocal integral 
relation for the flow of matter in a physicochemical system with a small deviation from the 
equilibrium state for a nonlinear relaxation have been established. 

The kinetic equations of aggregation processes in the nonlocal form have been studied too. 
Comparing the obtained equations with the previously known kinetic equations for the aggregation 
processes, it can be concluded that account of different time delays for clusters of different orders
significantly changes the form of the kinetic equations. This circumstance can especially manifest
itself at the initial moment.
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A feature of the obtained equation (35) is the presence of solutions describing the propagation of 
perturbations with a finite velocity in the form of solitary waves [8]. 

Conclusion. In the submitted work, for the first time sufficient conditions were established for the 
derivation of the perturbed KdV and Whitham equations describing the nonlinear propagation of waves for 
transport phenomena in physicochemical systems in the case of bottom mass source of low intensity and 
under the quadratic relaxation function. 

It is shown that the presence of a weak spatial nonlocality of the medium plays a fundamental role in the
derivation of Whitham-type equations. The properties of a nonlocal integral relation for the flow of matter in 
a physicochemical system with a small deviation from the equilibrium state for a nonlinear relaxation have 
been established. 

The kinetic equations of aggregation processes in the nonlocal form have been studied too. Comparing 
the obtained equations with the previously known kinetic equations for the aggregation processes, it can be 
concluded that account of different time delays for clusters of different orders significantly changes the form 
of the kinetic equations. This circumstance can especially manifest itself at the initial moment.
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ҚОЛДАНА ОТЫРЫП, ӘРТҮРЛІ ФИЗИКАЛЫҚ ПРОЦЕСТЕРДІ СИПАТТАУДЫҢ КЕЙБІР 

МӘСЕЛЕЛЕРІ

Аннотация.  Мақалада қозғалмалы сызықты емес толқындар түріндегі шешімдері бар теңдеулерге 
әкелуі мүмкін әртүрлі физикалық процестердің математикалық модельдерін құру кезіндегі типтік 
жағдайларды анықтау бойынша авторлардың зерттеу нәтижелерінің жалпыланған шешімдері 
келтірілген. Массаның, жылу мен импульстің берілу құбылыстарын математикалық сипаттау кезінде 
релаксация уақытын және қоршаған ортаның құрылымдық элементтерінің ұзақ мерзімді өзара 
әрекеттесуін ескеру мәселелері үлкен ғылыми және практикалық қызығушылық тудырады. 

Талдау көрсеткендей, бұл сұрақтар тепе-теңдік термодинамика әдістерін қолданудың дұрыстығы 
проблемалы болған жағдайда жоғары қарқынды жылдам технологиялық процестердің жеткілікті 
математикалық модельдерін құруда өте маңызды. Алғаш рет төмен қарқындылықтағы төменгі 
масса көзі жағдайында және квадраттық релаксация функциясы бар физика-химиялық жүйелердегі 
тасымалдау құбылыстары үшін толқындардың сызықтық емес таралуын сипаттайтын КдВ  және 
Уизем  теңдеулерін алу үшін жеткілікті шарттар жасалды.

Уитхем типті теңдеулерді шығаруда әлсіз кеңістіктік жергілікті емес ортаның болуы негізгі рөл 
атқаратындығы көрсетілген. Сызықтық емес релаксация үшін тепе-теңдік күйінен аз ауытқумен 
физика-химиялық жүйеде зат ағымы үшін локальды емес интегралдық қатынастардың қасиеттері 
анықталды. Жергілікті емес формадағы агрегация процестерінің кинетикалық теңдеулері де 
зерттелді. Алынған теңдеулерді агрегация процестері үшін бұрын белгілі болған кинетикалық 
теңдеулермен салыстыра отырып, әртүрлі ретті кластерлер үшін әртүрлі уақыттық кідірістерді есепке 
алу кинетикалық теңдеулердің пішінін айтарлықтай өзгертеді деп қорытынды жасауға болады. Бұл 
жағдай әсіресе бастапқы сәтте пайда болуы мүмкін.

Түйінді сөздер: физика-химиялық процестер, диссипативті ағындар, тасымалдау теңдеулері, 
тұтқыр сұйықтықтар.
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НЕКОТОРЫЕ ПРОБЛЕМЫ ОПИСАНИЯ РАЗЛИЧНЫХ ФИЗИЧЕСКИХ ПРОЦЕССОВ 
С ПОМОЩЬЮ АНАЛОГИЧНЫХ НЕЛИНЕЙНЫХ МОДЕЛЕЙ РАСПРОСТРАНЕНИЯ ВОЛН

Аннотация. В статье представлено обобщенное представление результатов исследований авторов 
по выявлению типичных ситуаций при построении математических моделей различных физических 
процессов, которые могут приводить к уравнениям с решениями в виде движущихся нелинейных волн. 
Проблемы учета времен релаксации и дальнодействующих взаимодействий структурных элементов 
сред при математическом описании явлений передачи массы, тепла и импульса представляют большой 
научный и практический интерес. 

Анализ показывает, что эти вопросы особенно актуальны при создании адекватных математических 
моделей высокоинтенсивных быстрых технологических процессов в условиях, когда корректность 
использования методов равновесной термодинамики становится проблематичной. Впервые были 
созданы достаточные условия для вывода возмущенных уравнений КдВ и Уизема описывающих 
нелинейное распространение волн для явлений переноса в физико-химических системах в случае 
источника донной массы низкой интенсивности и с квадратичной функцией релаксации.

Показано, что наличие слабой пространственной нелокальности среды играет фундаментальную 
роль при выводе уравнений типа Уитхема. Установлены свойства нелокального интегрального 
соотношения для потока вещества в физико-химической системе с небольшим отклонением от 
равновесного состояния для нелинейной релаксации. Также были изучены кинетические уравнения 
процессов агрегации в нелокальной форме. Сравнивая полученные уравнения с ранее известными 
кинетическими уравнениями для процессов агрегации, можно сделать вывод, что учет различных 
временных задержек для кластеров разного порядка существенно изменяет форму кинетических 
уравнений. Это обстоятельство может особенно проявиться в начальный момент.

Ключевые слова: физико-химические процессы, диссипативные потоки, уравнения переноса, 
вязкие жидкости.
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