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Abstract. In this note we prove that the minimum of the second characteristic number of the Newton potential
among bounded open sets of RY with given volume is achieved by the union of two identical balls. The Newton
potential can be related to a nonlocal boundary value problem for the Laplacian, so we obtain results on the second
eigenvalue of the nonlocal Laplacian as well.

1 Introduction. LetQ be a bounded open domain in RY,d > 3.Consider the Newton potential
operator N: L,(Q) = L,(Q)
Nfi= [ eale= 7o)y ®
0

where
1

(d = 2)oqlx — y|*=%’

Sd(x—J’)= d23' (2)

a

2n'/2, . .

ando; = rn(—d)zls the surface area of the unit sphere in R4,
2

Since €4 is real and symmetric function N is self-adjoint operator. Therefore, all characteristic num-
bers are real. In addition, it is easy to check that the operator N is positive. This means all its eigenvalues
are positive. The characteristic numbers N of may be enumerated in ascending order,

P < pp < -
wherey; is repeated in this series according to its multiplicity. We denote the corresponding eigenfunc-
tions by u;,u;, ..., so that for each characteristic number p; there is one and only one, corresponding

eigenfunction u;,
u; = ,ul-Nui, i = 1,2,

In a bounded domain Q of the Euclidean space RY, it is very well known that the solution to the
Laplacian equation

—Au(x) = f(x), x€Q 3)
is given by the Newton potential formula
u(x) = [, ea(x = y)f(y)dy, xeQ, 4)

for suitable functions f* supported in €. An interesting question having several important applications is
what boundary conditions can be put on u on the (smooth) boundary dQ so that equation (3) com-
plemented by this boundary condition would have the solution in still given by the same formula (4), with
the same kernel &; given by (2). It turns out that the answer to this question is the integral boundary
condition [4]
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u(x) degq(x

) ou(y)
— =+ fia o vy — [gealx =) T2dy = 0,x €90, )

where % denotes the outer normal derivative at a point y on d€2. A converse question to the one above
would be to determine the trace of the Newton potential (4) on the boundary surface €2, and one can use
the potential theory to show that it has to be given by (5).

In [4] by using the boundary condition (5) the eigenvalues and eigenfunctions of the Newton
potential were explicitly calculated in the 2-disk and in the 3-ball. In general, the boundary value problem
(3)-(5) has various interesting properties and applications (see, for example, Kac [2, 3] and Saito [8]). The
boundary value problem (3)-(5) can also be generalized for higher degrees of the Laplacian, see [5]. In
this paper we are interested in some spectral geometry questions of N.

Historically, for the first time in the scientific literature, in Rayleigh’s famous book “Theory of
Sound” (first published in 1877), by using some explicit computation and physical interpretations, he
stated that a circle minimizes (among all domains of the same area) the first eigenvalue of the Dirichlet
Laplacian. The musical interpretation of this result could be: among all drums of given area, the circular
drum is the one which produces the deepest bass note. The proof of this conjecture was obtained after
some decades later, simultaneously (and independently) by G.Faber and E.Krahn. Nowadays, the
Rayleigh-Faber-Krahn inequality has been expanded many other operators; see [6] for further references.

In Section 2 we prove the following Rayleigh-Faber-Krahn theorem for the Newton potential N, i.e.
it is proved that a ball is minimizer of the first characteristic number of the Newton potential N among all
domains of given volume in R¢.

In Section 3 we are interested in minimizing the second characteristic number of N among open sets
of given volume. We show that the minimizer is no longer one ball, but two! The similar result for the
Dirichlet Laplacian called Krahn-Szego theorem, that is, the minimum of the second eigenvalue of the
Dirichlet Laplacian among bounded open sets of R¢ with given volume is achieved by the union of two
identical balls. See, for example, [1] for further references.

2 Rayleigh-Faber-Krahn theorem. In this section we prove the following analogy of the Rayleigh-
Faber-Krahn theorem for the Newton potential N.

Theorem 1. A ball 2 is minimizer of the first characteristic number of the Newton potential N
among all domains of given volume, i.e.

p1(127) < e (12) (6)
for an arbitrary bounded open domain 2 € R* with |Q| = |Q*|.
We will use this result later in the proof of Theorem 2.
Proof of Theorem 1. Slightly different statement of Lemma 1 is calledJentsch’s theorem in [9].
However, for completeness of this note we restate and give its proof below.
Lemma 1.7he smallest characteristic number uq of N is simple; the corresponding eigenfunction u,
is positive and any other eigenfunctionu;, i # 1 is sign changing in ().
Proof. The eigenfunctions of Nmay be chosen to be real as its kernel is real. First let us prove that u,
cannot change sign in the domain (2, that is,
u (D () =l u, I, xy € .
In fact, in the opposite case, by virtue of the continuity of the function u4 (x), there would be neigh-
borhoods U(xq,7) < 2 and U(y,,r) < {2 such that
lus () us N > uy (uy (), x € Uxp, 7) € 2,y € U(yo,7) € 0.
And so, by virtue of

fnfd(x —8eq(§ —y)dé > 0. )
We obtain
(N?luyl, luyg]) 1
||u1||2 = “ulllzL LLSd(X —8)eq (€& —y) déluy () |luy (¥)ldxdy
! 1
> ||u1||2 L L Lgd(x - f)sd(f - y) dful(x)ul(y)dXdy = ‘u_% (8)
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uZis the smallest characteristic number of N2 and u; is the eigenfunction corresponding to u2, i.e.
— 42 NZ
Uy = U V" Uy,
Therefore, by the variational principle we have

1 (N?*f.f)
— = cl2(0) ————- 9
,uf SUPrer2(n) ||f| 2 €))

This means that the strong inequality (8) contradicts the variational principle (9).

Now we shall prove that the eigenfunctionu,(x) cannot become zero in (2 and therefore can be
chosen positive in 2.

In fact, in the opposite case there will be a point x; € 2 such that

s (xo) = 42 f f ea(xo — O)ea( — y) dEus )y = 0

form which, by virtue of the condition (7), the contradiction follows: u,(y) = 0,Vy € 0.

Since u, is positive it follows that u; is a simple. In fact, if there were an eigenfunction % linearly
independent of u; and corresponding to p4, then for all real ¢ linear combination u; + cuj also would be
eigenfunction corresponding to y; and therefore, by what has been proved, it could not become zero in 2.
As c is arbitrary, this is impossible.

Finally, we show that the other eigenfunctionu;,i = 2,3, ..., are sing changing in 2. If u; = 0,i #

1,oru; <0,i # 1 then
fulul- =0
0

as u; (x) > 0 in 2. This contradicts the orthogonality of the eigenfunction family {u;}of N.

Lemma 1 is proved.

Let 2 be a bounded measurable set in R%. Its symmetric rearrangement £2*is an open ball originated
at 0 with a measure equal to the measure of 2, i.e. |2*| = |2]. Let u be a nonnegative measurable
function in (2, in the sense that all its positive level sets have finite measure,

Vol({x|u(x) > t}) < oo, (Vt > 0).

In the definition of the symmetric-decreasing rearrangement of u can be used the layer-cake

decomposition [7], which expresses a nonnegative function u in terms of its level sets as

0

u(x) = fX{u(x) > t}dt
0
whereX is the characteristic function of the corresponding domain.
Definition 1. [7]Let u be a nonnegative measurable function in £). A function

u*(x) = fX{u(x) >t} dt
0
is called a symmetric-decreasing rearrangement of a nonnegative measurable function u.
By Lemma 1 the first characteristic number u; of the operator N is positive and simple; the
corresponding eigenfunction u; can be chosen positive in (2. Recalling Riesz’ inequality [7] and the fact
that g4 (x — y) is a symmetric-decreasing function, i.e. £; and €;* have the same formula, we obtain

| [u0d 20t - umeodyax < | [ wemeate =y uGodydx, (10)
_(2 _Q * *
In addition, for each nonnegative function u € L2(2) we have
[l 2y = 10712 (1)
Therefore, from (10), (11) and the variational principle for u, (2*), we get
M (.Q) _ fg'ul(x)|2dx fmlui(x)lzdx
1 =

Jo Joui O Gx=y)uy ()dydx — [ [ u1 ()8 (x—y)uj (x)dydx —
J9() |7 dx
veLz@”) [, [, 9()0(x — y)9(x)dydx
Theorem 1 is proved.
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3Krahn-Szego theorem. In this section we are interested in minimizing the second characteristic
number of the Newton potential N among open sets of given volume. As in case of the Dirichlet Lapla-
cian, the minimizer is no longer one ball, but two!

Theorem 2.The minimum of u, (2) among bounded open sets of R® with given volume is achieved by
the union of two identical balls.

Similar result for the Dirichlet Laplacian is called the Krahn-Szego theorem. See, for example, [1] for
further references.

Proof of Theorem 2. Lemma 1 says that among eigenfunctions of N only the first eigenfunction is
positive

u; (x) > 0,vx € 0.

Therefore,
u,(x) > 0,vx € 0t c 2,0% # {0}.
u,(x) <0,vx €N~ c 2,0 +{0}.
We have
() = o (@) [ 2ax = a0y, € 0
0
Taking
+rn _ (uy(x) in 0%,
uz () = {O otherwise, 12)
and
oy fuy(x)inn-,
uz () = {0 otherwise,
we obtain
00 = () [ eale = U3 O)Ay + 160 | ealx - gy, x € 0.
0 0-
Multiplying by u3 (x) and integrating over 2% we get
| ngeorar =p@ [ w360 [ eate-yugiayax+
o+ o+ o+
U, (2) f . uy(x) | eq(x —y)u; (y)dydx, x € 0.
0 0-

The second term in the right hand sight is negative as we know sign of all integrants. Therefore, one

has
| ngeordx <@ | wbeo [ ety 0ddvax,
o+ o+ o+

that 1s,

Joyelug (0)|dx
Jor s () [yh €a(x — yIuz (v)dydx
From here by using the variational principle one obtains
Jo+ 9GO dx
() Jp a(x — y)9(y)dydx

[l (o)) 2dx

< up ()

,U.z(.Q+) = infﬁeLZ(_Q+)f
nt

< < u, ().
w3 0 s ax — y)ug (dydx 12
Similarly, we get
p(27) < pup ().
So we have
Ha (27 < pp(2), 11 (27) < pp(2). (13)

— 92 ——
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We now introduce B*and B~, balls of the same volume as 2 and 27, correspondingly. According
to Theorem 1, we have

p(BY) < py (271), i (B7) < puy (27). (14)

Let us introduce a new open set 2 defined as 2 = BT U B~. Since {2 is disconnected, we obtain its
eigenvalues by gathering and reordering the eigenvalues of B*and B~. Therefore,

#2(2) < max(py (B, uy (B7)).
According to (13) and (14) we have

p2 () < max(py (B, (B7)) < max(py (21), 4y, (27)) < o (12).

This shows that, in any case, the minimum of u, is to be sought among the union of balls. But, if the
two balls would have different radii, we would decrease the second eigenvalue by shrinking the largest
one and dilating the smaller one (without changing the total volume). Therefore, the minimum is achieved
by the union of two identical balls.

Theorem 2 isproved.
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HbIOTOH MOTEHIHUAJIBIHBIH EKIHIII CUIIATTBIK CAHBI )KAHHIA
. Cyparan
KP BFM Maremartika oHe MaTeMaTHKaIIBbIK YJriiey HHCTUTYThI, AnmMaTthl, Kazakcran

Tipek ce3nep: Jlanmac-benpTpamu omepaTopsbl, ©TKI3TiM IIeKapa, KACHIH/BI IIEKTIK eCeTl.

AnHoranus. JKymbicta HbIOTOH MOTEHIMANBIHBIH CKIHINI CHIATTBIK CaHbl OEPUIreH KeJeMIi R9-neri
IICHENTSH alllbIK JKUBIHAAP apachlHIa ©3iHIH ¢H a3 IIaMachlH Oip-KelKi eKi mapiblH OipryiHae KaObUIIaiTHIHBIH
nonenneiimi3z. HeloToH noTeHnuansl JlamnacuanHbIH JIOKATBIBI €MeC MIeKapaiblK ece0iHe KaTacThl OOJBIN TaObI-
JATBIHIBIKTAH AJIBIHATBIH HOTWKeNep JlarulacMaHHBIH JIOKalbIbl e€MeC MICKapalbIK ece0iHe CeKiHIN MEHIIIKTI
MOHIHEJIE THICTI.

HBIOTOH MOTEHIHUAJIBIHBIH EKIHIII CATTATTBIK CAHBI )KAMHJIA
. Cyparan
HHcruTyT MaTemaTuku 1 Matematuieckoro moaenupoBanusi, MOH PK, Anmatel, Kazaxcran

Tipek ce3nep: Jlamiac-bensTpamu oneparopbl, OTKI3TIII [IIEKapa, KUCHIH/IBI IIIEKTIK €CeTl.
Annortanusi. )Kymbicra HplOTOH IIOTEHIMATBIHEIH €KiHIII CHITATTHIK CaHbl Gepinren kememai RY-neri menen-
TeH aIlbIK JKUBIHAAP apachlHAA ©31HIH €H a3 IMIaMachlH Oip-KeNKi eKi mapAslH OipryiHae KaObUIIAaHTHIHBIH JoJIeI-
neiimi3. HproToH moreHmmansl JlamracnaHHBIH JIOKAJIBIBl €MeC IIeKapaiblK ece0iHe KartacThl OoJbIn TaObLia-
THIHIBIKTAH alIbIHATHIH HOTIXKeNep JlarmiacnaHHbIH JIOKABIBl €eMec MIeKapalblK ece0iHe eKiHIII MEHIITIKTI MoHiIHe e
THICTI.
IHocmynuna 17.03.2015 e.
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