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ASTROPHYSICAL S-FACTOR AND REACTION RATE  
OF THE RADIATIVE 3H(p,)4He CAPTURE 

 
Abstract. Calculations of the astrophysical S-factor of the proton radiative capture on 3H at energies from 1 

keV to 10 MeV in the frame of Modified Potential Cluster Model with classification of orbital states of nuclear 
particles according to Young tableaux and isospin were carried out and the possibility of description of available 
experimental data in the energy range from 50 keV to 5 MeV is shown. We calculated rate of this reaction from 0.05 
to 2 T9, because it can play certain role in the primordial nucleosynthesis of the Universe. 

Key words: Nuclear astrophysics; primordial nucleosynthesis; light atomic nuclei; astrophysical energies; 
radiative capture; thermonuclear processes; potential cluster model; forbidden states, p3H system. 

 
1. Introduction 

 
The proton capture on 3H reaction is of interest from both theoretical and experimental points of view 

for understanding the dynamics of photonuclear processes involving the lightest atomic nuclei at low and 
ultralow, i.e., astrophysical energies [1]. It also plays a role in the nucleosynthesis of primordial elements 
in the early Universe [1-3] leading to the pre-stellar formation of 4He nuclei. Therefore, experimental 
studies of this reaction continue. New data for the total cross section of proton radiative capture on 3H and 
the astrophysical S-factor in the energy range from 50 keV to 5 MeV [4] and at 12 and 39 keV [5] in the 
center of mass system (c.m.) have been obtained. These data will be used by us for further comparison 
with the calculation results. In addition, we ought to note other experimental studies of the 
photodisintegration of 4He carried out, for example, in works [6]. Also, interesting theoretical results for 
photodisintegration of this nucleus into the p3H channel were published in [7], including, on the basis of 
ab initio studies (see, for example, [8]). 

Upon cooling to a temperature of 0.8 MeV, the processes of the primordial nucleosynthesis became 
possible [9,10] with the formation of stable 2Н, 3Не and 4Не nuclei and, also stable in the first minutes of 
the Universe, the 3Н nucleus. These reactions are shown in Table 1 – the processes of the radiative capture 
are marked by italic. In table also the data of the S-factors and total cross sections at low energies in the 
energy range 10 – 20 keV were given with references to original works with these results. Table 1 shows 
that only one of these reactions, No.4, results in energy absorption Q<0. All of the others lead to energy 
release Q>0. Some inverse nuclear reactions, for example, photodisintegration of 3,4Не and 2,3Н by 
gamma-quantum cannot occur because of their extremely low energies at which weak processes cannot 
keep the balance [10]. Therefore the constant synthesis of stable nuclei without their further disintegration 
to lighter nuclei becomes possible. 
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Table 1 - Basic reaction of the primordial nucleosynthesis with light nuclei 
 

No. Process 
Released 
energy 
in MeV 

Astrophysical S-factor in 
keV b at 10 – 20 keV in center 
of mass – the accurate energy 

is stated in square brackets 

The total cross section t in b for 
the given energy 

Reference 

1. p+n → 2H+ 2.225 3.18(25)10-3 [10.0] 3.18(25)102 [10.0] [11] 

2. 2H+p → 3He+ 5.494 3.0(6)10-4 [10.4] 1.0(2)10-2 [10.4] [12] 

3. 2H+n → 3H+ 6.257 1.210-5 [10.5]* 1.1 [10.5]* [13] 

4. 3Н+p → 3He+n 
–0.763 
(see [14]) 

2536 [12]*** 
81537 [roughly at 12 keV above the 
threshold or 1.03354 MeV in l.s.] 

[15] 

5. 3Нe+n → 3H+p 0.764 63.2 [10.3] 6.14(16) 106 [10.3] [16] 

6. 3H+p → 4He+ 19.814 2.210-3 [10.0] 4.010-2 [10.0] [5] 

7. 3Нe+n → 4Hе+ 20.578 1.710-4 [18.4] 9.2(2.0) [18.4] [17] 

8. 2H+2H → 3He+n 3.269 
51.4(2.0) [9.94] 241.3(9.4) [9.94]** [18] 

53.05(0.55) [10.0]*** 255.1(2.9) [10.0] [19] 

9. 2H+2H → 3H+p 4.033 56.1(1.6) [9.97] 270.4(7.6) [9.97]  [20] 

10. 2H+3Hе→4He+p 18.353 7480(200) [10.7] 0.5(1) [10.7]** [21] 

11. 2H+3H→4He+n 17.589 12328.4 [9]*** 14200 [9] [22] 

12. 2H+2H→4He+ 23.847 5.7(2.4)10-6 [10.0] 2.9(1.2)10-5 [10.0] [23] 

13. 2H+3Hе→5Li+ 16.66 0.41 [111]*** 5.3 [111] [24] 

14. 2H+3H→5He+ 16.792 0.17 [90]*** 50 [90] [24] 

* - theoretical value calculated on the basis of the Modified Potential Cluster Model 
** - the value calculated on the basis of the S-factor 
*** - the value calculated on the basis of the total cross section 
 
This was the situation when the Universe was about 100 sec old and the number of protons and 

neutrons was comparable – approximately 0.2 neutrons to each proton. The epoch of primordial 
nucleosynthesis finished at approximately 200 sec [9] by which time practically all neutrons are bound 
into 4He nuclei and the number of 4He is about 25% of the number of 1H nuclei. At that point the content 
of 2H and 3He relative to 1H was about 10-4–10-6 [1–3,10]. 

Thus 4Не was the last nucleus to emerge at the initial stage of nucleosynthesis because heavier nuclei 
such as C and O could only be synthesized in the process of nuclear reactions in stars. The reason for this 
is the existence of some an instability gap for light nuclei (A = 5), which, apparently, cannot be bridged in 
the process of initial nucleosynthesis. In principle, 4Не could have given rise to heavier nuclei (A = 7) in 
the 4Не + 3Н → 7Li + γ and 4Не + 3Нe → 7Be + γ reactions. However the Coulomb barrier for these 
reactions is about 1 MeV while the kinetic energy of the nuclei at temperatures of ~1 Т9 is of the order of 
0.1 MeV and probability of such reactions will be negligible [25]. The mechanism of synthesis of 4Не 
explains its abundance in the Universe confirms its origin at the pre-stellar stage and corroborates the Big 
Bang theory. 

It is important to estimate the S-factors of reactions 1–14. For example, as will be seen further, the 
astrophysical S-factor of proton capture on 2H at an energy of 1 keV is in 5–10 times lower than the S-
factor of the proton capture on 3H at the same energy [13]. This means that the latter process, which 
contributes to the formation of 4He in primordial nucleosynthesis, is much more likely, in spite of the 
lower abundance of 3H relative to 2H [9,10,26]. Most data available in the literature [1–4,13,25] relate to 
the abundance of elements such as 3Не at present time. This is generally confirmed by modern 
astrophysical observations [9,26]. However, the abundance of 3H for the first 100–200 s after the Big 
Bang cannot be much smaller than that of 2H since the neutron capture reaction, in spite of the reduction 
of neutron numbers down to 0.2 of the proton numbers, can go on deuteron at any energy. In addition, the 
half-life of 3H is 4500(8) days [27] and do not make a real contribution to the decrease of the number of 
3H at the first few minutes after the Big Bang. 

The quantity of tritium, additionally to process No.3, also increases due to reactions No.5 and No.9, 
but can decrease due to processes No.6 and 11. At energies lower than 0.8 MeV reaction No.4 makes 
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virtually no contribution to reductions in tritium. Meanwhile, the total cross section of reaction No.11 is 
about 14.2 mb at 9 keV [22] and of the reaction No.6 is about 410-2 �b at 10 keV [5] show their small 
relative contributions to the formation of 4He. However the number of deuterons available for reaction 
No.11 is approximately 4–5 orders of magnitude less than the number of protons taking part in reaction 
No.6. Therefore the overall contribution of the two reactions in pre-stellar formation of 4He will be 
similar.  

Reaction No.12 proceeds with comparatively low probability, since the E1 process is forbidden by 

the isospin selection rules. This leads to the factor  at multipolarity of -
quantum of J = 1 [13]. This product defines the value of the total cross sections of the radiative capture 
and E1 processes with the same Z/m ratio, for particles of the initial channel leads to zero cross sections. 
The probability of the allowed E2 transitions in such processes is usually nearly 1.5 to 2.0 orders of 
magnitude less [28] that was noted earlier in reviews [9,10]. 

Let us show furthermore the reaction rates given in work [29] in the form of parametrizations. Shape 
of these rates for first reactions, leading to the formation of 4He or nuclei with mass of 3, is shown in 
Fig. 1. One can see that considered in this work reaction is at the third level for rate of forming 4He and its 
rate in some times lower, for example, that the reaction rates of 3H(d,n)4He or 3He(d,p)4He. However, at 
the energy about 10 T6 the rate of the last reaction equals the reaction rate of the proton radiative capture 
on 3H. 

All these results and more new data from works [30,31] show that the contribution of the 3H(p,γ)4He 
capture reaction into the processes of primordial nucleosynthesis is relatively small. However, it makes 
sense to consider this process for making the picture complete of the formation of prestellar 4He and 
clearing of mechanisms of this reaction. In addition, as it was shown furthermore, our calculations of this 
reaction rate, based on the modern data of the astrophysical S-factors [5], lays slightly lower from the 
results of works [29,32-34]. The latest works do not take into account new data [4,5], which were taken 
into account by us in this work, and our results can be considered as an improved data on the rate of the 
considered reaction. 

 

 
Figure 1 - Reaction rates from [29] 

 JJJ mZmZ 2211 /)1(/ 
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Moreover it should be noted that our understanding of the different stages in the formation of the 
Universe, of the processes of nucleosynthesis occurring in it and of the properties of new stars, is still 
developing. Therefore there is a pressing need to acquire new information on primordial nucleosynthesis 
and on the mechanisms of the Universe’s formation and this is one of the main tasks for the construction 
of a unified cosmological model. All of this directly applies to the detailed study of the 3H(p,γ)4He capture 
reaction in the astrophysical energy region on the basis of the modern nuclear model. This model, as 
shown below, has already demonstrated its efficiency in the description of the characteristics of almost 30 
such reactions [13,35-41]. 

 
2. Used model 
Earlier in our works [13,35-37,40-42] the possibility of description of astrophysical S-factors or total 

cross-sections of the radioactive capture for three dozens of processes on the basis of two-body potential 
cluster model (PCM) was shown and also the preliminary results [43] for p3H-capture at astrophysical 
energies have been obtained. The calculations of these reactions are carried out on the basis of the 
modified variant of PCM with forbidden states (FSs) [44] and classification of states according to Young 
tableaux (MPCM). 

The well-defined success of the MPCM in the description of the total cross sections of this type can 
be explained by the fact that the potentials of the intercluster interaction in the continuous spectrum are 
constructed on the basis of the known elastic scattering phase shifts or structure of the resonance spectrum 
levels of the final nucleus, and for the discrete spectrum – on the basis of the main characteristics of the 
bound states (BSs) of such nuclei: the excited (ES) or the ground (GS) states. These intercluster potentials 
are based also on the classification of the cluster states according to Young tableaux [45], which enables 
one to determine the presence and quantity of the FSs in each partial wave. This means finding the 
number of wave function (WF) nodes in such cluster systems [35]. 

Furthermore, such potentials permit us to carry out the calculations of some basic characteristics of 
the considered particles interaction in the elastic scattering processes and reactions. For instance, these 
can be the astrophysical S-factors of the radiative capture reactions [46] or the total cross sections of these 
reactions [47]. Including radiative capture cross sections at the astrophysical and thermal energy range 
which has been considered in our previous papers [13,35-37,40-42]. On the basis of such conception we 
succeeded in the correct description of the total cross sections of the radiative capture processes of almost 
thirty reactions for light nuclei at thermal and astrophysical energies [13,35-37,40-42]. 

Therefore, continuing studying the thermonuclear reactions [13,35-37,40-42] on the basis of the 
MPCM [13,35] with separation of orbital states according to Young tableaux let us consider description of 
the astrophysical S-factor of the radiative proton capture on 3H at energies of 1 keV–10 MeV and rate of 
this reaction from T9 = 0.05 to T9 = 2. Preliminary results on S-factor of this reaction at astrophysical 
energies in the frame of the MPCM were given in our previous work [43]. New results for the rate of the 
proton capture on 3H were obtained here and comparison of our results from [43], published in 1995, and 
the newest experimental data also published in 1995 year too, given further and do not take into account 
in our work [43]. For carrying out of the present calculations the potentials of the scattering processes and 
bound p3H states were improved and detailed classification orbital states of p3H system according to 
Young tableaux and isospin is given. Basic methods and principles of the MPCM used here recently were 
partially given in [40], and more detailed in book [35]. 

 

3. Astrophysical S-factor of the proton capture on 3H 
Earlier in [43], based on the modified potential cluster model, the total cross sections and the 

astrophysical S-factor of the proton radiative capture process on 3H were calculated. Meanwhile, it was 
assumed that the main contribution into the cross sections of E1 photodisintegration of 4He in p3H 
channel, or into the proton radiative capture on 3H, was due to the isospin-flip transitions for which 
ΔT = 1 [48]. Therefore, the 1P1 potential for p3He scattering in the pure with respect to isospin (T = 1) 
singlet state of this system and the 1S potential for the ground pure with respect to the isospin T = 0 bound 
state of 4He nucleus in p3H channel [43] should be used in calculations. 

Using these conceptions, the calculations of the E1 transition with refined potential of the ground 
state of 4He (see Table 2) were carried out from the start, in comparison with [43]. The results of these 
calculations of the astrophysical S-factor at energies from 1 keV up to 10 MeV are shown in Figs. 2a and 
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2b by the green solid lines. In the energy region specifically from 10 keV, considered earlier in [43], and 
up to 10 MeV here the new results were obtained and they practically do not differ from our previous 
results given in [43]. 

 

Table 2  Pure with respect to isospin of T = 0 potentials of the Gaussian form for p3H interactions in the singlet channel. Here, EGS 
is the calculated bound ground state energy and Eexp is the experimental value of this energy [14] 

 

System 2S+1L 
V0 

(MeV) 
 

 (fm-2) 
EGS 

(MeV) 
Еexp 

(MeV) 

р3Н 
1S -62.906841138 0.17 -19.81381000 -19.813810 
1P +8.0 0.03 – – 

 
New experimental data was taken from [4,5], and additional data from [49] not known to us earlier 

were also used. It can be seen from these figures that the calculations performed about 20 years ago [43] 
well reproduce the data on the S-factor obtained in [4] at energies of p3H capture from 50 keV to 5 MeV 
(center of mass system). These data were published after the publication of our article [43] and have 
noticeably lower ambiguity at energies lower 1 MeV than do earlier results [50-53] and they more 
accurately determine the general behavior of the S-factor at low energies, practically coinciding with early 
data [49] in an energy range of 80–600 keV. The energy region above 1–2 MeV has been studied in many 
papers; therefore, for comparison, we are shown these earlier results in Fig. 2b, that demonstrate a large 
ambiguity of experimental measurements done in different time and works: circles [51], open squares 
[52], crosses () [53], and downward open triangles [50]. 

10-3 10-2 10-1 100

10-3

10
-2

10-1

3H(p,)4He

E
cm

, MeV

S
,  

ke
V

 b

 
Figure 2a - Astrophysical S-factor of the proton radiative capture on 3H in a range of 1 keV–1 MeV. Green line shows calculation 

with the GS 1S potential given in Table 3, red line shows the results of approximation from [5], blue line shows results of 
approximation from [4], black line shows our approximation. Points show recalculation of total capture cross sections [4], given 

in [5], upward open triangles [49], rhombs [5], downward open triangles [50] 
 

At the energy 1 keV the calculated value of the S-factor is equal to 0.95 eV b, and calculation results 
at energies less than 50 keV are slightly lower than data of [5], where for S0 from the parametrization of 
the form 
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 S(Ec.m.) = S0 + Ec.mS1 + E
2

c.mS2, (1) 
 

the value 2.0(2) keV mb was obtained, for the S1 parameter the value 1.6(4)10-2 mb in [5], and for the S2 
1.1(3)10-4 mb keV-1 is given. The results of approximation by expression (1) with the given above 
parameters of experimental data [5] being in a good agreement with these data are shown in Fig. 2a by the 
red solid line. 
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Figure 2b - Astrophysical S-factor of the proton radiative capture on 3H in a range of 1÷10 MeV. Green line shows calculation 
with the GS potential given in Table 3. Points show recalculation of total capture cross sections [4] given in [5], upward open 

triangles [49], circles [51], open squares [52], crosses [53], and downward open triangles [50] 
 
In [4] for the same values we found S0 = 1.8(1.5) keV mb, S1 = 2.0(3.4)10-2 mb and S2 = 1.1(1.4)10-4 

mbkeV-1. Results of such extrapolation are given in Fig. 2a by the blue solid line. However, the linear 
extrapolation of the available experimental data according to three latest points of works [4,49] to 1 keV 
leads to its value about 0.6(4) eV b, i.e., is three times less than it was in [5]. In addition, the data of [5] 
have relatively large error and, notably, are needed to be refined in future. In order to get rid of the 
existent data ambiguity of the S-factor of the proton capture on 3H, we need its new measurements, even 
though in 2–3 points in the energy range approximately from 5–10 up to 30–50 keV. 

It is seen from Fig. 2a that the calculated S-factor at the lowest energies, approximately at the region 
1–3 keV, practically does not depend on energy. It affords ground for assumption that its value at zero 
energy practically does not differ from the value at 1 keV. Therefore, the difference of the S-factor at 0 
and 1 keV, evidently will be equal not more than 0.05 eV b and this value one can consider as an error of 
determination of the calculated S-factor at zero energy, i.e., represent it in the form S(0) = 0.95(5) eV b. If 
for parametrization of the calculated S-factor at the energy range 1–100 кэВ it is necessary to use 
quadratic form (1), so for its parameters it is possible to obtain the next values: S0 = 0.9530 eV b, 
S1 = 3.497 10-2 eV b keV-1, S2 = 1.216 10-4 eV b keV-2 at the value of 2 = 0.049 at 10% errors of S-factor. 
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The results of such interpolation are shown in Fig. 2a by the black solid line. It is clear that expression (1) 
doesn’t fit very well for interpolation of the calculated S-factor, especially lower 10–12 keV, since leads 
to the other shape of the line at low energies. 

 

4. Reaction rate of the 3H(p,)4Hе radiative capture 
Furthermore, in Fig. 3, the reaction rate NA˂v˃ of the proton capture on 3H is shown by the solid 

green line, which corresponds to the solid green line in Figs. 2a and 2b and is presented in the form [46] 
 

 


 
0

9
2/3

9
2/14 )/605.11exp()(107313.3 dETEEETvN A

, (2) 

 

where vN A   is the reaction rate in cm3mole-1sec-1, E is in MeV, the cross section  (E) is measured in 

μb, μ is the reduced mass in amu, Т9 is the temperature in 109 K [46], which specifies in our calculations 
in the range from 0.05 to 2.0 T9. Integration of the cross sections was carried out in the range 1 keV–2 
MeV for 2000 steps with the step value of 1 keV. The expansion of this interval into the large side, for 
example, up to 3 MeV from 3000 steps at the same step led to a change of the reaction rate of about 1%. 

We can see in Fig. 3 the sharp increase of the reaction rate value at low Т9 in the range 0.05–0.5. 
However, at larger Т9, approximately 1.5–2.0, vN A   almost reaches its saturation, tending to the value 

on the order of 104 cm3mole-1sec-1. Finally note that we do not succeed to find other results on the rate of 
this reaction, obtained by using other methods, in order to make a comparison with our calculations. 
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Figure 3 - Reaction rate of the proton radiative capture on 3H. Green line is the calculation results for the GS potential from the 

Table 2, which correspond to cross sections shown in Fig. 2 by the green solid line. Dashed red line is reaction rate 
approximation by (3) 

 
The resulting shape of the reaction rate in the range of 0.05–2.0 T9 can be approximated by a general 

polynomial 

 1
9
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kA TavN  (3) 

with parameters given in Table 3. 
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Table 3 - Expansion parameters for the reaction rate of the form (3) 
 

k 1 2 3 4 5 
ak -9.0 105.5 2628.0 -313.0 -130.0 

 

The result of the rate calculation with such parameters is shown in Figure 3 by dashed red line at the 
average value 2 = 1.33 at 1% errors of the reaction rate. The increasing of the series dimension up to 7 
leads to unessential improvement in the description of the theoretical curve. However, the reduction of 
dimension up to 4 leads to a sharp increasing of 2 up to a value of about 100. 

 

5. Conclusion 
Thereby, in the frame of considered modified potential cluster model based on the intercluster 

potentials describing elastic scattering phase shifts and characteristics of the binding state with the 
potential parameters suggested about 20 years ago [43], on the basis of only the E1 transition we 
succeeded in description of the general behavior of the S-factor of the proton capture on 3H at energies 
from 50 to 700 keV. Really, on the basis of analysis of the experimental data above 700 keV [50] about 
20 years ago we have done calculations of the S-factor for energies down to 10 keV [43]. As we can see it 
now, the results of these calculations reproduce well new data on the S-factor, obtained in [4] (points in 
Figs. 2a and 2b) at energies in the range 50 keV to 5 MeV. 

However, the available experimental data on the S-factor at 50 keV and lower energies have a low 
enough accuracy and significant ambiguity, as it seen from Figure 2a. To avoid these ambiguities, it needs 
new additional and independent measurements of S-factor in the energy range from about 5–10 to 30–50 
keV with minimal errors. The experimenters did not return to this problem for more than 10 years [5], 
while reliable measurements of S-factor at energies of 50 keV–5.0 MeV have been made more than 20 
years ago [4]. Evidently, modern measurement techniques could reduce error value and obtain more 
reliable data, especially at the lowest energies. And this, in turn, will get rid of the existing ambiguities in 
determining the reaction rate. 

The magnitude of р3Н capture reaction rate calculated in this paper at temperatures from 0.01 T9 up to 
5 T9 leads to the conclusion that this reaction might make some contribution to the formation of 4He 
nuclei in the primordial nucleosynthesis of elements in the Universe, especially at higher temperatures of 
order 3–5 Т9. The results obtained for the reaction rate due to their simple numerical approximation can be 
used later for the comparative evaluation of yield of 4He produced in this reaction, and, perhaps, in order 
to determine their contribution to the abundance of helium nuclei formed in the primordial 
nucleosynthesis of the Universe. 

We emphasize once again that we could not find the results of other papers with calculations of the 
astrophysical S-factor or the considerable reaction rate obtained by other methods, in spite of the 
appreciable interest that this reaction represents in terms of some astrophysical problems. Currently 
available errors of measurements of the astrophysical S-factor [5] may significantly affect the value of the 
reaction rate of radiation p3H capture leading to ambiguities in calculations of 4He yield and, ultimately, 
affect the results obtained for its abundance. Perhaps it is time to eliminate the existing problems in 
measuring the astrophysical S-factor of the considerable reaction and obtain, eventually, more accurate 
results for the reaction rate. 
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Аннотация. Түрленген əлеуетті кластерлік модель (ТƏКМ) шеңберінде Юнг сызбалары жəне изоспин 
бойынша ядролық бөлшектердің орбиталық жағдайының жіктеуімен 1 кэВ-дан 10 МэВ-ға дейінгі энергия 
кезінде радиациялық p3H басып алу реакциясының астрофизикалық S-факторының есептері орындалды жəне 
50 кэВ-дан 5 МэВ-ға дейінгі энергия аумағында қолда бар эксперименттік мəліметтерді сипаттау мүмкіндігі 
көрсетілді. Бұл реакция Əлемнің бастапқы нуклеосинтезінде белгілі бір рөл атқара алатындықтан, оның 
жылдамдығы 0.05-ден 2 Т9. дейінгі температураларда есептелген 

Түйін сөздер: Ядролық астрофизика; бастапқы нюклеосинтез; жеңіл атом ядролар; астрофизикалық 
энергия; радиациялық басып алу; термоядролық процесстер; əлеуетті кластерлік модель; тыйым салынған 
жағдай, p3H жүйе. 
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АСТРОФИЗИЧЕСКИЙ S-ФАКТОР И СКОРОСТЬ РЕАКЦИИ  
РАДИАЦИОННОГО 3H(p,)4He ЗАХВАТА 

 
Аннотация. В рамках модифицированной потенциальной кластерной модели с классификацией 

орбитальных состояний ядерных частиц по схемам Юнга и изоспину выполнены расчеты астрофизического 
S-фактора реакции радиационного p3H захвата при энергиях от 1 кэВ до 10 МэВ и показана возможность 
описания имеющихся экспериментальных данных в области энергий от 50 кэВ до 5 МэВ. Поскольку эта 
реакция может играть определенную роль в первичном нуклеосинтезе Вселенной, рассчитана ее скорость 
при температурах от 0.05 до 2 Т9. 

 Ключевые слова: Ядерная астрофизика; первичный нюклеосинтез; легкие атомные ядра; 
астрофизические энергии; радиационный захват; термоядерные процессы; потенциальная кластерная 
модель; запрещенные состояния, p3H система. 
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